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1. Introduction

There are many theories involving fermions whose low energy excitations are dominated by

bosonic modes. Historically the first case of great general relevance is superconductivity in

metals [1], which was the starting point of innumerable applications and theoretical devel-

opments in several fields. In the context of relativistic field theories important examples

are vector dominance in strong-electromagnetic interactions [2] and dominance of chiral

mesons in QCD. In these cases the dominant composite bosons have fermion number zero,

but in QCD at high density so called colour superconductivity [3] is expected to occur,

and in this case the dominant composite bosons have fermion number 2 like Cooper pairs

in superconducting metals. Obviously there is an immense literature about these subjects,

but since we address the problem of composite boson dominance in its generality without
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actual applications to any of the above examples, we quote only historical works. We note

however, that in spite of a huge literature about bosonization all these systems are, so far,

mostly treated phenomenologically.

Nonrelativistic methods can hardly be extended to relativistic field theories with few

exceptions, one being ref. [4] which has some features in common with the relativistic

papers quoted below. We therefore only mention Bogoliubov’s work on superconductivity

for his historical importance as the first organic approach to bosonization [5]. We do not

discuss fermion systems in 1+1 dimensions either. For them a wealth of exact results exists

which are however dimension specific and can be found in textbooks [6].

For relativistic theories in higher dimensions the problem of bosonization has essentially

two features: how to introduce the fields associated to the dominant composite bosons

and how to handle the resulting effective action. There are basically two approaches.

In the first one higher dimensional terms (quartic in the fermion fields) if absent, are

introduced by hands in the action and the bosonic fields are generated by the Hubbard-

Stratonovich transformation [7]. Sometimes, when the added terms are irrelevant in the

renormalization-group terminology, they are introduced to stabilize the evaluation, for

instance in numerical simulations, of the fermion determinant [8], but, more often, the

investigations are analytical studies and are substantially restricted to a nonrenormalizable

framework [7]. In one noticeable exception [9] the Hubbard-Stratonovich transformation is

scale-dependent (”re-bosonization”) leading to a functional renormalization-group analysis.

In the second approach the boson fields are Kalb-Ramond fields introduced by a change of

fermion variables in the action [10], a technique also adopted in the quoted work [4] about

non relativistic many-body systems. No general procedure however has been developed to

handle the fermionic determinant appearing in the effective action, in particular for gauge

theories. Moreover the above approaches are essentially restricted to composite bosons

with fermion number zero.

Recently a method of bosonization was developed in the framework of many-body the-

ories by which we can treat both charged and neutral composites [11]. The starting point

in this method is the partition function in operator form, namely the trace of the transfer

matrix in the Fock space of the fermions. The physical assumption of boson dominance is

then implemented by restricting the trace to fermion composites. This requires an approxi-

mation of a projection operator in the subspace of the composites, the approximation being

the better, the higher the number of fermion states in the composites. The approximate

projection operator is constructed in terms of coherent states of composites, and evaluation

of the trace, which is done exactly, generates a bosonic action in terms of the holomorphic

variables appearing in the coherent states.

Our approach shares two features with a variational method: The reduction of the

starting full space, here the fermionic Fock space, to a subspace, here that of the composites,

and a variational procedure to determine the structure functions. The utility of variational

methods and bosonization has been widely appreciated in the theory of many-body systems.

But their potentiality has also been considered in the framework of relativistic field theories,

in particular gauge theories, for for example by R. Feynman [12] who, however, was sceptical

about its practical applicability, and recently in connection with QCD at high baryon
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density [13].

The particular bosonization method we investigate has been completely developed for

nonrelativistic many-body systems and checked on the BCS model of superconductivity

and the pairing model of finite systems like atomic nuclei and ultra-small superconducting

grains [11]. The properties of these systems are exactly reproduced. But in the nonrel-

ativistic derivation of the effective action, higher powers of the temporal spacing, which

would not contribute in the continuum limit, were neglected. This obviously cannot be

done in relativistic theories because of ultraviolet divergences and in the present paper we

perform a different derivation.

We adopt a lattice regularization for two reasons. The first one is that it allows an

unambiguous definition of composites. The second one is related to gauge theories. We

expect that in these theories the action of effective bosons will involve vacuum expectation

values of invariant functions of gauge fields which cannot be evaluated in the present

framework. A lattice formulation should allow us to extract such expectation values from

numerical simulations.

There is a price to be paid for such advantages related to the well known difficulty with

chiral invariance on a lattice, which can only in part be overcome by using Kogut-Susskind

fermions. However our method can, at least in principle, be used with any regularization

for which a transfer matrix has been explicitly constructed.

A major difference with respect to nonrelativistic theories is related to Euclidean invari-

ance. The formalism of the transfer matrix does not treat time and space in a symmetric

way, and therefore Euclidean invariance of the bosonic action must be checked a posteriori.

All other symmetries are instead respected in our procedure.

We tested the validity of our method on a model with 4-fermion interaction [14] in

3+1 dimensions: we exactly reproduce all the known results in the boson sector, namely

condensation of a composite boson which breaks the discrete chiral invariance of the model

and its mass. In addition we determine its structure function, whose spatial part is identical

with that of the Cooper pairs of the BCS model of superconductivity. Our approach in this

case has some points in common with a variational calculation performed for the model in

1+1 dimensions [15].

Our solution of the model is more complicated than the standard one, but it is not

done looking for a greater simplicity, but as a check with special attention to Euclidean

invariance. In any case it gives explicitly the structure function of the composite, which to

our knowledge was not known.

In this work we confine ourselves to fermion systems at zero fermion density. An

extension to non-vanishing fermion density will be presented elsewhere [16]. Its application

to the 4-fermion interaction model reproduces the properties of the fermion sector.

The paper is organized in the following way. In section II we report, for the convenience

of the reader, the general formalism. In section III we derive an effective action for an

arbitrary relativistic theory, and discuss the saddle point approximation. In section IV

we present an alternative derivation of the effective action with the relative saddle point

approximation which turns out to be identical to the previous one. In section V we apply
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our method to the model with 4-fermion interaction and in section VI we summarize our

results. Most technical details are relegated in appendices.

2. General formalism

For reader’s convenience we report the general formalism of bosonization based on coherent

states of fermion composites. By using discrete time, the operator form of the partition

function is

ZF = TrF
∏

t

Tt,t+1 . (2.1)

The trace is over the Fock space of the fermions and Tt,t+1 is the Euclidean transfer matrix

which maps the Fock space at time t into that at time t + 1. t runs in a range which

depends on the temperature.

Under the assumption of boson dominance we can restrict the trace to fermion bosonic

composites. The restricted partition function can be written

ZC = TrF
∏

t

P Tt,t+1 , (2.2)

where P is a projection operator in the subspace of the composites. Because the formalism

treats asymmetrically time and space, it is convenient to use the following notation: we

shall use boldface letters, as x, to denote spatial coordinates, and italic letters to denote

space-time coordinates: x = (t,x).

To construct the projector P we first introduce the composite creation operators

Φ̂†
x,K = û†Φ†

xK v̂† =
∑

ij

û†
i (Φ

†
xK)ij v̂

†
j , (2.3)

where x represents the spatial coordinate of the composite and K its quantum numbers,

among which can be radial excitations, orbital angular momentum, spin, flavour, etc.

The ΦxK are the composite structure functions (wave functions) and û†
i and v̂†i are, re-

spectively, creation operators of fermions and antifermions in state i, obeying canonical

anti-commutation relations,

{û†
i , ûj} = {v̂†i , v̂j} = δij , {ûi, ûj} = {v̂i, v̂j} = {ûi, v̂j} = {û†

i , v̂j} = 0 . (2.4)

The composite structure functions ΦxK are to be determined variationally in order to

maximize the saturation of the partition function ZC .

Since the fermion creation operators are nilpotent, the composite creation operators

Φ̂† can be classified according to their index of nilpotency, which is the highest integer

exponent Ω such that
(

Φ̂†
)Ω

6= 0 . (2.5)

It is useful to introduce the operator doublet

ψ̂ =

(

û

v̂†

)

(2.6)
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and the orthogonal projectors

P
(−)
0 ψ̂ = û (2.7)

P
(+)
0 ψ̂ = v̂† (2.8)

in such a way that

Φ̂† = ψ̂†P
(−)
0 Φ†P

(+)
0 ψ . (2.9)

By analogy with canonical bosonic systems, we build coherent states of composites

|ξ〉 = exp





∑

x,K

ξxKΦ̂†
xK



 |0〉 , (2.10)

where the ξxK ’s are holomorphic variables and |0〉 is the fermion vacuum. We call these

states coherent because they have the form of coherent states of elementary bosons, sharing

with these states the property of a fixed phase relation among the components with different

number of bosons. But the basic property of coherent states cannot be fulfilled. Indeed

Φ̂xK |ξ〉 6= ξxK |ξ〉 (2.11)

because composite creation-destruction operators don’t satisfy canonical commutation

rules. Again in analogy with canonical bosonic systems, we define the operator

P =

∫ [

dξdξ∗

2πi

]

1

〈ξ|ξ〉 |ξ〉〈ξ| , (2.12)

where
[

dξdξ∗

2πi

]

=
∏

x,K

[

dξxKdξ∗xK

2πi

]

(2.13)

which is neither a projector nor the identity in the subspace of the composites, but, as

shown in appendix B, it approximately becomes a projector onto the space of composites

when the latter ones have a large index of nilpotency. Indeed since the composites do not

obey canonical commutation relations, their properties can be very different from those of

canonical bosonic coherent states. However, if the index of nilpotency of the composites

is large enough, the composite system resembles a canonical bosonic system, and all the

properties of canonical boson coherent states will approximately hold for the composite

coherent states.

The scalar product of coherent states is

〈ξ|ξ′〉 = det+ (I + B B′†) (2.14)

where

B† = ξ · Φ† =
∑

x,K

ξxK Φ†
xK (2.15)

and for any matrix Λ we define

det±Λ := det(P
(±)
0 Λ) . (2.16)
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The projection operator P
(±)
0 appears when matrices act on half the fermion field. Notice

that the entries of all the matrices do not include time. I is the identity in the space of

these matrices. By a little abuse of notation we will write ”1” instead of I when there

should be no ambiguity in the interpretation. Similarly we will replace by ”1” the identity

in various subspaces like color, taste and so on.

3. First form of the effective boson action

According to [18], the fermion part of the transfer matrix, which is a function of all ele-

mentary bosonic (also gauge) fields, that we represent by σ, is factorized as

Tt,t+1 = T [σt, σt+1] = T̂ † [σt] T̂ [σt+1] = T̂ †
t T̂t+1 . (3.1)

We use the subscript t to denote the dependence of any matrix on the particular configu-

ration of bosonic fields σt, and

T̂ = exp[−û†M û − v̂†MT v̂] exp[v̂N û] (3.2)

aside from a possible extra factor which is a function only of the bosonic fields and can

be therefore included in the bosonic contribution to the partition function. The form of

the matrices M and N (the superscript T means transposed) depends on the nature of

the interactions and the regularization adopted for the fermions. What follows does not

depend on their explicit expressions which are reported in the appendix C for Kogut-

Susskind fermions in the flavour basis (we do not know any suitable expression in the

spin-diagonal basis).

At finite time-strip of length L0, with periodic boundary conditions for the bosonic

fields, the partition function (2.1) is

ZF = TrF T̂ †
0 T̂1 T̂ †

1 · · · T̂ †
L0−1 T̂0 (3.3)

while its restriction to the composites (2.2) is

ZC = TrF P T̂ †
0 T̂1 P T̂ †

1 · · · P T̂ †
L0−1 T̂0

=

∫ L0−1
∏

t=0

[

dξtdξ∗t
2πi

]

1

〈ξt|ξt〉
〈ξt|T̂ †

t T̂t+1|ξt+1〉 (3.4)

where we have introduced a copy of the Fock space of the composites at each time slice.

Explicitly

|ξt〉 = exp





∑

x,K

ξK (t,x) Φ̂†
xK [σt]



 |0〉 . (3.5)

We remark that the structure functions Φ do not depend explicitly on time, but as they are

defined in presence of an external bosonic field configuration, time will enter as a label of

the bosonic fields.
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We introduce also copies of the matrix B, defined in (2.15) at each time slice

B†
t =

(

ξ · Φ†
)

t
=

∑

x,K

ξK(t,x)Φ†
xK [σt] . (3.6)

Now setting M = 0, a restriction which will be eliminated in the next section, we evaluate

the matrix elements

〈ξt|T̂ †
t T̂t+1|ξt+1〉 = 〈0|evBtueu†N†

t
v†evNt+1ueu†B†

t+1
v† |0〉 . (3.7)

With the help of the formulae collected in appendix A we find

〈0|evBtueu†N†
t
v†evNt+1ueu†B†

t+1
v† |0〉 =

∫ [

dα∗dαdβ∗dβ

〈αβ|αβ〉

]

〈0|evBtueu†N†
t
v† |αβ〉

×〈αβ|evNt+1ueu†B†
t+1

v† |0〉
= det+(1 + B∗

t+1N
T
t+1) det+(1 + BtN

†
t )

×
∫

[dα∗dαdβ∗dβ]e
−α∗α−β∗β−β∗ 1

1+B∗
t+1

NT
t+1

B∗
t+1α∗−αBT

t

1

1+N∗
t

BT
t

β

= det+(1 + B∗
t+1N

T
t+1) det+(1 + BtN

†
t )

×det−

(

1 + B†
t+1

1

1 + Nt+1B
†
t+1

1

1 + BtN
†
t

Bt

)

= det+ Dt,t+1 (3.8)

where

Dt,t+1 =
(

1 + BtN
†
t

) (

1 + Nt+1B
†
t+1

)

+ BtB
†
t+1 . (3.9)

Therefore by substitution in (3.4), using equation (2.14)

ZC =

∫

∏

t

[

dξtdξ∗t
2πi

]

exp [−Seff(ξ∗, ξ)] (3.10)

where
∏

t

[

dξtdξ∗t
2πi

]

=
∏

x,K

[

dξK(x)dξ∗K(x)

2πi

]

(3.11)

Seff =
∑

t

tr+

[

ln
(

1 + BtB
†
t

)

− ln Dt,t+1

]

. (3.12)

In analogy to (2.16) we used the definition valid for any matrix Λ

tr± Λ := tr(P
(±)
0 Λ) . (3.13)

and we have replaced (t,x) by x to shorten the notation.

It is remarkable that the effective action for the composites Seff has been evaluated ex-

actly, so that the only approximations in the partition function are the physical assumption

of boson dominance and the form of the projector over the subspace of the composites.

Remember that the entries of these matrices do not not include time, which appears

only as a label. For instance the matrix D satisfies the equation

Dt,t+1 = D†
t+1,t , (3.14)

where the operation of Hermitean conjugation does not affect time.
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3.1 The saddle point equations

When the index of nilpotency is large the partition function is dominated by the minimum

of the action. Its variation with respect to the matrix elements of B and B† gives

B†
t

1

1 + BtB
†
t

=
[

N †
t

(

1 + Nt+1B
†
t+1

)

+ B†
t+1

] 1

Dt,t+1
(3.15)

1

1 + Bt+1B
†
t+1

Bt+1 =
1

Dt,t+1

[(

1 + BtN
†
t

)

Nt+1 + Bt

]

. (3.16)

As a consequence of (3.14), these equations are not independent from each other, because

the second can be obtained from the first one by exchanging t with t + 1 after Hermitean

conjugation. So it is sufficient to study only one of them.

In the sequel we consider the case in which the effective action has a minimum with

respect to the bosonic fields, coupled with the fermions, at a constant value. Of course,

this assumption cannot hold for gauge fields. We are then able to determine the solutions

which provide the composite structure functions at the semiclassical level.

If the bosonic fields appearing in Nt are constant at the saddle point, there are constant

nontrivial solutions Bt = B for the second order equation

BN †B − BN †N − N = 0 . (3.17)

Setting

B = NA (3.18)

for A 6= 0 we find

N (AN †NA − AN †N − 1) = 0 . (3.19)

If we separate A into its Hermitean and anti-Hermitean parts, we see from this equation

that A commutes with N †N . The solution

A± =
H ±

√
1 + H2

2H
, (3.20)

where

H2 =
1

4
N †N , (3.21)

shows that A is Hermitean.

Remark that

A± = −
[

A∓N †N
]−1

(3.22)

A+ + A− = 1 . (3.23)

The effective action at the saddle points

S± = −
∑

t

tr+ ln
(

1 + NA±N †
)

(3.24)

= −
∑

t

tr− ln
(

A2
±N †N

)

(3.25)

= −
∑

t

tr− ln

(

−A±

A∓

)

(3.26)

= −
∑

t

tr− ln
(
√

1 + H2 + H
)±2

(3.27)
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takes opposite values, the minimum being for the upper sign. The ground state is a

condensate of composites whose structure function in polar representation is

B =
1

2
NH−1f(H), (3.28)

the polar radius being

f(H) =
√

1 + H2 + H. (3.29)

In such composites the occupancy of high momentum fermion states is larger than that of

low momentum states. Such a structure of condensed bosons is quite different from the

structure of (even virtually) bound pairs. But it can be set in a more natural form by the

unitary transformation

(v̂′)† = û, (û′)† = v̂ . (3.30)

It defines a new vacuum

û′|0′〉 = v̂′|0′〉 = 0 (3.31)

related to the original vacuum according to

|0′〉 =
∏

i

û†
i v̂

†
i |0〉 . (3.32)

The new vacuum is the trivial solution of the saddle point equations. It is the completely

filled state and it is then physically equivalent to the original vacuum.

In the next section we will derive a new form of the effective action using the new

creation-annihilation operators.

4. Second form of the effective boson action

We perform the evaluation of the effective action with the new operators. We first remark

that the transformation (3.30) interchanges the role of the projectors P
(±)
0 . Since the

eigenstates of these projectors correspond to fermions propagating forward, respectively

backward in time, this transformation is related to time-reversal. Under its action

ψ̂†P
(+)
0 NP

(−)
0 ψ̂ = ψ̂′†P

(−)
0 NP

(+)
0 ψ̂′ . (4.1)

In the general case this transformation induces the replacements

N ↔ N †

Φ ↔ Φ†

M ↔ −M (4.2)

and a change in the purely bosonic contribution to the action. At M = 0 it interchanges

in form T̂ with T̂ † whenever N is Hermitean. Now (3.4) becomes

ZC = TrF P T̂0 T̂ †
1 P T̂1 · · · P T̂L0−1 T̂ †

0

=

∫ L0−1
∏

t=0

[

dξtdξ∗t
2πi

]

1

〈ξt|ξt〉
〈ξt|T̂t T̂ †

t+1 |ξt+1〉 (4.3)
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where we have used the same notation as before for the coherent states but now

|ξt〉 = exp
(

ξt v̂′Φ†û′
)

∏

j

[

(û′
j)

†(v̂′j)
†
]

|0′〉 . (4.4)

To construct the effective action we have to evaluate the matrix elements

〈ξt|T̂t T̂ †
t+1|ξt+1〉 = 〈0′|

[

∏

i

(û′
i)
†(v̂′i)

†

]†

exp
(

ξ∗t (û
′)†Φ(v̂′)†

)

T̂t T̂ †
t+1

× exp
(

ξt+1v̂
′Φ†û′

)

∏

j

[

(û′
j)

†(v̂′j)
†
]

|0′〉 . (4.5)

Now we notice that for an elementary boson the basis of coherent states

exp(b b̂)(b̂†)Ω|0〉 , exp(b b̂†)|0〉 , (4.6)

are equivalent to each other in the subspace of states with 0, 1, . . . ,Ω bosons. By

analogy instead of the states exp(ξv̂′Φ†û′) ×∏

i(û
′
i)
†(v̂′i)

†|0′〉 we can use the basis

exp
(

ξ(û′)†Φ (v̂′)†
)

|0′〉. They are not exactly equivalent because the composites do not

satisfy canonical commutation relations, but they should be equivalent within our approx-

imations, and we will have a crosscheck of this assumption. In the following we drop the

prime on all creation-destruction operators.

First we evaluate the action of T̂ † on coherent states

T̂ †|ξ〉 = exp[û†N † v̂†] exp[−û†M † û − v̂†M∗v̂] exp[û†B†v̂†]|0〉 . (4.7)

By repeated application of the identity, valid for arbitrary matrices A,B

exp[û†B û] exp[û† A v̂†]|0〉 = exp[û† eB A v̂†]|0〉 (4.8)

we get

T̂ †|ξ〉 = exp
{

û†
[

N † + e−M†

B† e−M†
]

v̂†
}

|0〉 . (4.9)

Then the matrix elements of the transfer matrix are

〈ξt| T̂t T̂ †
t+1 |ξt+1〉 = det+ {1 + [Nt + exp(−Mt)Bt exp(−Mt)]

×[N †
t+1 + exp(−M †

t+1)B
†
t+1 exp(−M †

t+1)]
}

(4.10)

and the new effective action reads

S′
eff =

∑

t

tr+

{

ln
[

1 + BtB
†
t

]

− ln
[

1 +
(

Nt + eMt Bt eMt

)

×
(

N †
t+1 + eM†

t+1 B†
t+1 eM†

t+1

)]}

in which we have changed the sign of the matrix M according to (4.2). Notice that while

the partition function must not change by application of the unitary transformation (3.30),
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the effective action need not remain the same. For our application to the model with 4-

fermion interaction we are interested in the case of Mt = 0. In the following we shall

restrict ourselves to this case, then

S′
eff =

∑

t

tr+

[

ln
(

1 + BtB
†
t

)

− ln D′
t,t+1

]

(4.11)

with

D′
t,t+1 = 1 +

(

Nt + Bt

)

(

N †
t+1 + B†

t+1

)

(4.12)

Let us investigate what is the relation between this effective action and the one we got in

the previous section. Its expression (3.12) can be rewritten as

Seff =
∑

t

tr+

{

ln
[

Bt

(

B−1
t (B†

t )
−1 + 1

)

B†
t

]

− ln
{

Bt

[(

B−1
t + N †

t

)(

(B†
t+1)

−1 + Nt+1

)

+ 1
]

B†
t+1

}}

=
∑

t

tr−

{

ln
(

1 + B−1
t (B†

t )
−1

)

− ln
[

1 +
(

B−1
t + N †

t

)(

(B†
t+1)

−1 + Nt+1

)]}

which coincides with S′
eff under the change

Bt 7→ (B†
t )

−1 = Bt

[

B†
t Bt

]−1
(4.13)

for every t. Under this change the saddle-point equation for time independent solutions

Bt = B = NA becomes
(

A† N †NA† + N †NA† − 1
)

N † = 0 . (4.14)

This is the same as the equation we had in the previous section under the change A → −A,

therefore we have the time independent solutions

B± = −NA± = ∓ N

2H
(
√

1 + H2 ± H) . (4.15)

We see that in the saddle point approximation Φ is Hermitian when N is Hermitian. At

the saddle point

S
′
± = −

∑

t

tr− ln
(

1 + A∓ N †N
)

(4.16)

= −
∑

t

tr− ln

(

−A∓

A±

)

(4.17)

= −
∑

t

tr− ln
(
√

1 + H2 + H
)∓2

(4.18)

takes its minimum for the lower sign, and

S+ = S
′
−. (4.19)
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At the minimum the values of the two actions coincide, and therefore the corresponding

partition functions are equal at leading order. Let us notice that the transformation (4.13),

because of the identity (3.22), interchanges A+ with −A−.

The trivial and nontrivial solutions are strikingly similar to the corresponding solu-

tions of the BCS model of superconductivity. The comparison is best done using a polar

representation for the structure functions which separates the unitary factor which depends

on the intrinsic degrees of freedom, from the polar factor which is a function of the spatial

coordinates. Now the unitary factors are necessarily different, because different are the

intrinsic degrees of freedom, but the polar factors and therefore the spatial wave functions

turn out to be identical. Indeed in the case of superconductivity the trivial solution is

given by ξk = ∞ for k < kF , ξk = 0, for kk > kF , k being the momentum and kF the Fermi

momentum of the electrons while the structure function of the condensed Cooper pairs is

given by [11]

σ2

(
√

1 + E2 − E
)

. (4.20)

The Pauli matrix σ2 which couples the spins to zero is replaced in a relativistic theory by

the spin-taste structure matrix N(2H)−1 and the electron kinetic energy E measured with

respect to the chemical potential divided by the energy gap is replaced by the relativistic

energy H. In the present case the chemical potential disappears, because the composites

are neutral, and to investigate the effect of a chemical potential one should introduce

states with non vanishing fermion number. What makes the comparison with the BCS

model somewhat involved is the absence of a Fermi energy in relativistic theories with zero

chemical potential. Indeed the fully occupied state in the old operators of the relativistic

theory corresponds to the state where all single particle states are occupied below the Fermi

surface in the BCS model.

5. Application to a model with 4-fermion interaction

We apply our formalism to the field theory with quartic interaction in 3+1 dimensions

regularized on a lattice with Kogut-Susskind fermions. For each of the four Kogut-Susskind

tastes we take Nf degenerated flavours. Hence, the continuum limit will describe a theory

with 4Nf flavours. In the flavour basis the action reads

S =
∑

x

′
∑

y

′ψ̄(x) [m 11 ⊗ 11 + Q]x,y ψ(y) +
1

2

g2

4Nf

∑

x

′(ψ̄(x)ψ(x))2 (5.1)

where m is the mass parameter, g2 the coupling constant, ψ the fermion fields and Q the

hopping matrix:

Q =
∑

µ

γµ ⊗ 11
[

P (−)
µ ∇(+)

µ + P (+)
µ ∇(−)

µ

]

. (5.2)

The matrices to the left (right) of the symbol ⊗ act on Dirac (taste) indices. We denote

by γ and t the matrices acting on these indices, respectively. The operators

P (±)
µ =

1

2
[11 ⊗ 11 ± γµγ5 ⊗ t5tµ] . (5.3)
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are orthogonal projectors. The fermion fields are defined on blocks (see appendix C for

details). The right and left derivatives ∇(±) are given by

∇(±)
µ = ±1

2

(

T (±)
µ − 1

)

. (5.4)

The factor 1/2 is due to the fact that the Tµ translate by one block

(

T (±)
µ

)

x1,x2

= δx2,x1±2µ̂ . (5.5)

The model has a discrete chiral symmetry at m = 0:

ψ → −γ5 ⊗ 11ψ , ψ̄ → ψ̄ γ5 ⊗ 11 . (5.6)

To have an action bilinear in the fermion fields we introduce auxiliary scalar field σ(x),

whose integration generates the four fermion coupling:

S ′ =
∑

x

′
∑

y

′ψ̄(x) (m + σ + Q)xyψ(y) +
4Nf

2g2

∑

x

′ σ2(x) . (5.7)

The partition function now reads

Z =

∫

[dσ][dψdψ] exp
[

−S ′
]

. (5.8)

5.1 The effective boson action

In the model with 4-fermion interaction with Kogut-Susskind fermions in the flavour ba-

sis [19] the matrix M = 0, while the matrix N is Hermitian and is given by

N(σ) = −2







(m + σ) γ0 ⊗ 11 +

3
∑

j=1

γ0γj ⊗ 11
[

P
(−)
j ∇(+)

j + P
(+)
j ∇(−)

j

]







. (5.9)

We will restrict ourselves to flavour singlet composites, what means that ΦxK acts trivially

on flavour indices, and thus, obviously, only flavour singlet composites can be written as

linear combination of the ΦxK. From now on, we will ignore flavour indices. According to

the results of the above sections, the effective action at the saddle point is

Seff(ξ̄∗, ξ̄, σ) = −
∑

t

tr− ln
[
√

1 + H2 + H
]2

(5.10)

= −L0

2
tr ln

[
√

1 + H2 + H
]

(5.11)

because the factor 1/2 coming from the projector P
(−)
0 , present in tr−, is compensated by

the exponent 2 in the ln.

We now show that this is equal to the standard result. The latter is obtained by a

direct integration over the fermion fields in the partition function

Z =

∫

[dσ] exp

[

−SF − 4Nf

2g2

∑

x

′ σ2(x)

]

(5.12)
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where

SF = −Tr ln(m + σ + Q) (5.13)

= −L0

2
tr

∫ π/2

−π/2

dω

2π
ln

[

H2 +
1

2
(1 − cos 2ω)

]

. (5.14)

Here Tr (notice the capital case T) is the trace on all the entries of Q, namely time

is included, and since Q acts on the whole fermion field there is no projector P
(−)
0 . The

explicit integration over ω reproduces, apart from a constant term, the expression in (5.11).

Therefore
∂

∂σ
Seff(ξ̄∗, ξ̄, σ) =

∂

∂σ
SF = −L0

2
tr

σ

H
√

1 + H2
. (5.15)

5.2 Mass of the effective boson

Let us consider the Gaussian fluctuations around the minimum of the action. To this end,

let us write

ξK(x) = ξK + ϕK(x) , (5.16)

ξ∗K(x) = ξ
∗
K + ϕ∗

K(x) , (5.17)

σ(x) = σ + η(x) . (5.18)

We can assume the ξK real, because the ξK are defined up to a global phase which can be

eliminated by a redefinition of the ΦxK .

Let us expand the effective action Seff(ξ + ϕ∗, ξ + ϕ, σ + η) to second order in powers

of ϕ, ϕ∗, and η. The linear term vanishes due to the gap equation and the terms involving

ϕϕ and ϕ∗ϕ∗ vanish on the saddle point. Ignoring the constant term Seff(ξ
∗
, ξ, σ), the

quadratic part of the effective action reads

Seff =
∑

x,x′

η(x)D(ηη)(x, x′) η(x′)

+
∑

xK,x′K ′

ϕ∗
K(x)D

(ϕ∗ϕ)
KK ′ (x, x′)ϕK ′(x′)

+
∑

x,x′K

η(x)D
(ηϕ)
K (x, x′)ϕK(x′)

+
∑

x,x′K

ϕ∗
K(x)D

(ϕ∗η)
K (x, x′) η(x′) (5.19)

where the D’s are given by traces involving the matrices ΦxK , Φ̄xK , and N (see appendix D

for details). Recall that the entries of these matrices are the fermion spatial coordinates

and Dirac-taste indices, and the label K of the composite bosons includes Lorentz, taste

and spatial (radial and angular momentum) quantum numbers. We expand the structure

matrices ΦxK in a basis of matrices Ξ(x,n) which act only on the spatial coordinates of

the fermions and Γγ which act only on the Dirac-taste indices

ΦxK =
∑

x1nγ

cxK,x1nγ Ξ(x1,n) Γγ . (5.20)
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We accordingly expand the boson fields

ϕn,γ(t,x) =
∑

x1K

cx1K,xnγ ϕK(t,x1) . (5.21)

We consider two options for the matrices Ξ(x,n)

[ Ξ(x,n) ]x1,x2
= δx1,x+ 1

2
n δx2,x− 1

2
n , (5.22)

[ Ξ(x,n) ]x1,x2
= δx1,x δx2,n. (5.23)

In the first case x has the physical meaning of the centre of mass coordinate of the compos-

ites and n of the relative distance of the fermions. Then the matrix Ξ must be separated into

two contributions: one for x = 2rx,n = 4rn, the other one for x = 2(rx + 1),n = 4rn + 2,

writing x = 2r, where the r are vectors with integer components. This accounts for the

fact that the coordinate of the center of mass can fall in the full lattice, while the positions

of the fermions and their relative distance are coordinates of blocks. In the second case x

and x are the coordinates of the fermions.

For the matrices Γ we require

Tr (Γ†
γ Γγ′) = δγγ′ . (5.24)

Note that the Γγ ’s verify the identity

P
(−)
0 Γγ P

(+)
0 = Γγ . (5.25)

If we are interested in the dynamics of the ϕ-fields we must determine the structure matrices

and therefore the coefficients c. But in this paper we have the limited goal of reproducing

the spectrum of the bosonic composite η. For this purpose we integrate out the ϕ-fields

and we do not need to determine the coefficients c.

Integration of the ϕ-fields generates an effective action for η of the form

Seff [η] =
∑

x,x′

η(x)

[

D(ηη) + K(ηϕ)
(

K(ϕ∗ϕ)
)−1 (

K(ηϕ)
)†

]

(x, x′) η(x′) . (5.26)

The explicit expression of the kernels appearing in this expression can be found in ap-

pendix D, but we remark that they don’t depend from the structure functions of the

ϕ-fields. Close to the continuum limit (σ → 0), its behaviour is given by

Seff [η] '
∫ π/2

−π/2

dω

2π

∫ π/2

−π/2

d3p

(2π)3
1

2
η(−ω,−p) η(ω,p)

×
[

Zω(σ2)ω2 + Zp(σ
2)

∑

i

p2
i + W (σ2)σ2

]

. (5.27)

As σ → 0, the integrals defining Zω(σ2), Zp(σ
2), and W (σ2) as discussed in appendix D,

are dominated by the logarithmic infrared divergence, and we get

Zω(σ2) ' Zp(σ
2) ' W (σ2)

4
' − 1

(2π)2
lnσ2 + O(1) . (5.28)
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The logarithmic divergences are the same which appear in the exact solution of the model

at large Nf , leading to logarithmic corrections to scaling and thus to the triviality of the

continuum limit. In conclusion, the mass of the scalar is

mη = 2σ , (5.29)

which is the exact relation with the chiral condensate obtained from the gap equation.

Notice also that Euclidean invariance is recovered in the continuum limit:

Zω(σ2)

Zp(σ2)
→ 1 . (5.30)

Summarizing, in this section we have shown that the hypothesis of boson dominance

and the associated formalism, applied to the 4-fermion interaction model reproduces the

exact solution in the boson sector, namely, the correct gap equation, mass gap, and loga-

rithmic corrections to scaling.

We know that the spectrum of the model contains also one fermion of mass mψ = σ.

This property is reproduced by an extension of the present formalism [16].

6. Summary and outlook

In this paper we applied a general method of bosonization to relativistic field theories

whose low energy excitations are dominated by bosonic modes. This is always the case in

the presence of spontaneous breaking of continuous symmetries. One of our goals is indeed

the study of low energy hadron dynamics in QCD.

Under the condition of boson dominance the fermion partition function can be re-

stricted to boson composites. To realize this restriction we use the formalism of the trans-

fer matrix, which is close to the Hamiltonian formalism of nonrelativistic theories, and

therefore very natural dealing with real or virtual bound states. The projection onto the

subspace of composites in the partition function is realized introducing coherent states

of composites. The projection operator is not exact, but its approximation is the more

accurate the higher the index of nilpotency of the composites (the number of fermionic

states which define their structure functions). Indeed it leads to exact results in the model

with quartic interaction in the Nf → ∞ limit, in which case the index of nilpotency also

tends to infinity. Evaluation of traces in the fermion Fock space can be performed without

any further approximation for theories which are quadratic in the fermion fields or can be

put in such form, a condition satisfied by all renormalizable models in 3+1 dimensions. It

generates a functional form of the partition function with an effective action of the com-

posites. In this derivation time and space are not treated in the same way, and Euclidean

invariance must be checked a posteriori, but all other symmetries are respected including

of course gauge invariance.

We checked our theory on the 4-fermion interaction model in 3+1 dimensions. Not

only did we reproduce all the known results in the boson sector, but we have also been

able to determine the structure functions of the condensed composite. It turns out that
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the polar factor of the structure function is identical to that of the Cooper pairs of the

BCS model of superconductivity.

The study of the 4-fermion interaction model in our formalism is not complete, because

we did not investigate if, in addition to the sigma, there are other bosonic modes. Indeed

what we actually did was to prove that projecting onto the composites subspace and then

integrating over the fermionic fields gives the same results as a direct integration (without

projection) of these fields as far as spontaneous breaking of chiral invariance and mass of

the composite are concerned. We must also observe that while the gap equation does not

depend on the number of space-time dimensions, our evaluation of the mass of the sigma

is restricted to 3+1 dimensions because we used completeness relations valid in this space.

The effective action we derived can be used in the study of QCD by numerical simu-

lations and, we hope, by a perturbative expansion along the lines of [11] and by keeping

into account the subtleties related to the 1/Nf expansion [20]. In this case the effective

bosons carry obviously the quantum numbers of the chiral mesons and chiral symmetry

is broken by the condensation of the sigma-meson. The introduction since the beginning

of the expectation value of the sigma-field as a variational parameter, should help in a

numerical simulation, as advocated in ref. [8]. But we must remember that the form fac-

tors of the composites depend in general on the fields of the elementary bosons coupled

to the fermions, as we have explicitly seen in the model with 4-fermion interaction. For

an actual numerical simulation in QCD therefore, we need a trial expression of the meson

form factors, which should depend on the gauge fields, as also required by gauge-invariance

of the effective action. Apart from the interest which it has per se, a perturbative approach

might prove useful also to provide trial expressions of the form factors.

We conclude by observing that the present formulation can be immediately used also

for studies of systems at finite temperature, while for finite fermion density we must first

include states with nonvanishing fermion number.
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A. Some notations and conventions

We have used the following identities valid for Berezin integrals
∫

[dα∗dα] e−α∗α = 1 (A.1)
∫

[dα∗dα] e−α∗Aα = detA (A.2)
∫

[dα∗dα] e−α∗Aα+J∗α+α∗J = detAeJ∗A−1J . (A.3)
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If |α〉 is a fermionic coherent state

|α〉 = e−αû† |0〉 (A.4)

then

〈α|α〉 = eα∗α〈0|0〉 = eα∗α (A.5)

and
∫

[dα∗dα]
1

〈α|α〉 |α〉〈α| = I . (A.6)

Remark that

û |α〉 = α |α〉 (A.7)

which implies the relations

〈αβ|ev̂Nû|γδ〉 = eδNγ〈αβ|γδ〉 = eδNγ+α∗γ+β∗δ (A.8)

〈γδ|eû†B†v̂† |0〉 = 〈0|ev̂Bû|γδ〉∗ = eγ∗B†δ∗ . (A.9)

With the help of these formulae we will compute

〈αβ|ev̂Nûeû†B†v̂† |0〉 =

∫ [

dγ∗dγdδ∗dδ

〈γδ|γδ〉

]

〈αβ|ev̂Nû|γδ〉〈γδ|eû†B† v̂† |0〉 (A.10)

=

∫

[dγ∗dγdδ∗dδ]e−γ∗γ−δ∗δ+δNγ+α∗γ+β∗δ+γ∗B†δ∗ (A.11)

=

∫

[dδ∗dδ] e−δ∗(1+B∗NT )δ+β∗δ−δ∗B∗α∗

(A.12)

= det+(1 + B∗NT ) e
−β∗ 1

1+B∗NT
B∗α∗

(A.13)

B. The operator P

The restriction of the partition function to the subspace of composite bosons can be written

ZC = TrF
∏

t

P Tt,t+1 (B.1)

where P is the projection operator on this subspace. For the sake of simplicity we consider

the case of a unique composite. In such a case

P =
Ω

∑

n=0

1

νn
|
(

Φ̂†
)n

|0〉〈0|Φ̂n| (B.2)

where

νn = 〈0|Φ̂n|
(

Φ̂†
)n

|0〉 . (B.3)

We must show that

〈0|Φ̂m P(Φ̂†)n|0〉 ' 〈0|Φ̂m|(Φ̂†)n|0〉 = δm,nνm . (B.4)
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These equations are generated by the following ones

〈ξ′|P|ξ′′〉 ' 〈ξ′|ξ′′〉 (B.5)

whose right and left hand sides are

〈ξ′|P|ξ′′〉 =

∫

dξ∗dξ

2πi
exp(−E(ξ∗, ξ, ξ′∗, ξ′′))

〈ξ′|ξ′′〉 = exp tr+ ln(1 + ξ′∗ξ′′ΦΦ†) (B.6)

where

E(ξ∗, ξ, ξ′∗, ξ′′) = tr+

[

ln(1 + ξ∗ξΦΦ†) − ln(1 + ξ′∗ξΦΦ†) − ln(1 + ξ∗ξ′′ΦΦ†)
]

. (B.7)

We evaluate the integral by the saddle point method. The saddle point equations are

(ξ − ξ′′) tr+
ΦΦ†

(1 + ξ∗ξΦΦ†)(1 + ξ∗ξ′′ΦΦ†)
= 0

(ξ∗ − ξ′∗) tr+
ΦΦ†

(1 + ξ∗ξΦΦ†)(1 + ξ′∗ξΦΦ†)
= 0 (B.8)

with solutions

ξ = ξ′′ ξ∗ = ξ′∗ . (B.9)

At the saddle point

E(ξ∗, ξ, ξ′∗, ξ′′) = −tr+ ln(1 + ξ′∗ξ′′ΦΦ†) . (B.10)

Moreover

∂2E
∂ξ∂ξ∗

=
∂2E
∂ξ∂ξ

(B.11)

∂2E
∂ξ∗∂ξ

= tr+
ΦΦ†

(1 + ξ′∗ξ′′ΦΦ†)2
. (B.12)

In conclusion

〈ξ′|P|ξ′〉 ' 〈ξ′|ξ′′〉
[

tr+
ΦΦ†

(1 + ξ′∗ξ′′ΦΦ†)2

]−1

. (B.13)

In presence of a number of composites n ¿ Ω the desired result, together with the idem-

potency property of projector

P ' P2 (B.14)

follow if we assume

tr
(

Φ†Φ
)n

∼ Ω−n+1 . (B.15)

But in states with n ∼ Ω, it is not possible to satisfy (B.5) even with an absolute

freedom about the form of the structure functions (which are instead determined by the

dynamics). The best we can do is to satisfy (B.5) (apart from an irrelevant constant factor)

for states with n + k composites, for fixed n ∼ Ω and |k| ¿ Ω.
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To clarify this point let us go back to the case of many composites and consider their

commutation relations

[

Φ̂α, Φ̂†
β

]

= tr(ΦαΦ†
β) − û†Φ†

βΦαû − v̂†Φ∗
βΦT

α v̂. (B.16)

In states with a number of composites n ¿ Ω, these relations are approximately canonical

provided the structure functions are sufficiently smooth. Indeed in such a case the last 2

terms are of order n/Ω.

C. The transfer matrix for Kogut-Susskind fermions

Kogut-Susskind fermions in the flavour basis are defined on hypercubes of twice the or-

dinary lattice spacing. We shall have a fermionic field ψα a
i (t,x) (and of course the cor-

responding ψ), where i = {1, . . . , Nf} is the flavour index, α = {1, . . . , 4} is the spinorial

index, a = {1, . . . , 4} is the taste index, while (t,x) is a 4-vector of even integer components

ranging in the intervals [0, Lt − 1] for the time component while [0, Ls − 1] for each spatial

components.

In order to simplify the notations let restrict here to periodic functions defined on one

dimensional interval x ∈ [0, L − 1], the extension to many dimensions and anti-periodic

functions being obvious.

The sum over even sites x includes for convenience a factor 2

∑

x

′ := 2
∑

x

. (C.1)

Momenta are quantized according to

p =
2π

L
n n = 0, 1,

L

2
− 1 (C.2)

The Fourier series and its inverse for the function f(x) defined on even sites are

˜̃
f(p) :=

L−2
∑

x=0

′f(x) eixp (C.3)

f(x) :=
1

L

L/2−1
∑

n=0

˜̃
f

(

2π

L
n

)

e−i 2π

L
nx . (C.4)

Notice that we use a double tilde to distinguish this transform from the standard one for a

function defined on all the sites which will be denoted by a single tilde. As f is a function

of an even argument we could set

g(s) := f(2s) (C.5)
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where s is an integer in the interval [0, L/2 − 1], then their Fourier transforms are simply

related as

˜̃
f(p) = 2

L/2−1
∑

s=0

f(2s) ei2sp (C.6)

= 2

L/2−1
∑

s=0

g(s) ei2sp (C.7)

= 2 g̃(2p) (C.8)

In the infinite volume limit we get the Fourier transform

˜̃f(p) :=
∞
∑

x=0

′f(x) eixp (C.9)

f(x) :=

∫ π/2

−π/2

dp

2π
˜̃
f(p) e−ixp . (C.10)

As a consequence, for instance, the δ-function must be written

δ(x − y) = 2

∫ π/2

−π/2

dp

2π
eip(x−y) (C.11)

and the Fourier transform of a matrix of the form

Λ = F (−4) (C.12)

for an arbitrary function F is

˜̃Λ(p) = 2F

(

1

2
(1 − cos 2p)

)

(C.13)

and its trace

tr Λ =
L

2

∫ π/2

−π/2

dp

2π
F

(

1

2
(1 − cos 2p)

)

=
∑

x

′

∫ π/2

−π/2

dp

2π
F

(

1

2
(1 − cos 2p)

)

. (C.14)

We report here the expression of the transfer matrix in the flavour basis [19], because

the expression in the spin-diagonal basis is not known to us in a convenient form. The

matrix N , which is Hermitean, in presence of a gauge field denoted by U , is given by

N(σ,U) = −2







(m + σ)(γ0 ⊗ 11) +

3
∑

j=1

(γ0γj ⊗ 11)
[

P
(−)
j ∇(+)

j + P
(+)
j ∇(−)

j

]







(C.15)

where

∇(±)
j = ±1

2

(

Û
(±1)
j (t)T

(±)
j − 1

)

(C.16)

are right-left covariant derivatives. The Û(t)’s are operators whose matrix elements are

the Wilson link variables Uµ(t,x1)
(

Ûµ(t)
)

x1,x2

= δx1,x2
Uµ(t,x1). (C.17)
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The matrix M depends on the link U0 variable. In the gauge U0 ∼ 1, in which U0 = 1 with

the exception of one time slice, M = 0. If we adopt this gauge, we must impose the Gauss

constraint on the states. But it is very simple to write the expression of M without gauge

fixing following ref. [21]. This is actually necessary in a numerical simulation.

In the absence of gauge fields and with constant σ = σ, according to (3.21)

H2 = (m + σ)2 − ∆ . (C.18)

with

∆ =
1

4

∑

i=1,3

(

T
(+)
i + T

(−)
i − 2

)

(C.19)

The eigenvalues of H2 are therefore the fermion energies

E2
q = (m + σ)2 + q̃2 , (C.20)

where the momentum q̃2 is

q̃2 =

3
∑

i=1

q̃2
i (C.21)

with

q̃2
i =

1

2
(1 − cos 2qi) . (C.22)

D. Quadratic fluctuations

Let us give some details about the expansion of the effective action around the constant

fields (B,B
†
, σ) which minimize it. We shall set

Bt = B + δBt (D.1)

σ(t,x) = σ + η(t,x) (D.2)

where

B = ξ∗ · Φ (D.3)

δBt = (ϕ∗ · Φ)t =
∑

xK

ϕK(t,x)∗ΦxK (D.4)

and shall concentrate on quadratic fluctuations.

In the parametrization of the form-factors ΦxK we choose the form in (5.23) for the

matrix Ξ(x,x′).

It is also convenient to introduce the matrix η̂t by

η̂t = 2
∑

x

η(t,x) Ξ(x,x) (γ0 ⊗ 11) . (D.5)
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D.1 Expansion of the action

According to our definitions the expansion for the effective action reads:

Seff(ϕ∗, ϕ, η) = Seff +
∑

t

tr+

{

R (BδB†
t + δBtB

†
)

−RN (BNδB†
t+2 + δBt B

†
N + BN η̂†t+2 + η̂tB

†
N )

+ R δBt δB†
t − RN (δBt δB†

t+2 + η̂tη̂
†
t+2 + η̂t δB†

t+2 + δBt η̂†t+2)

−1

2
[R (B δB† + δBt B

†
) ]2

+
1

2
[RN (BN δB†

t+2 + δBt B
†
N + BN η̂†t+2 + η̂tB

†
N ) ]2

}

, (D.6)

where

BN = N + B (D.7)

R =
(

1 + BB
†
)−1

(D.8)

RN =
(

1 + BNB
†
N

)−1
. (D.9)

Ignoring the constant term, the expansion can be cast in the form

Seff =
∑

tx,t′x′

1

2
η(t,x) η(t′,x′)D(ηη)(t,x; t′,x′)

+
∑

txK,t′x′K ′

ϕ∗
K(t,x)ϕK ′(t′,x′)D

(ϕ∗ϕ)
KK ′ (t,x; t′,x′)

+
∑

tx,t′x′K

η(t,x)ϕK(t′,x′)D
(ηϕ)
K (t,x; t′,x′)

+
∑

tx,t′x′K

η(t,x)ϕ∗
K(t′,x′)D

(ηϕ∗)
K (t,x; t′,x′) , (D.10)

since the linear terms vanish due to all stationarity equations —we are expanding around

a minimum— and the terms involving ϕKϕK ′ and ϕ∗
Kϕ∗

K ′ vanish due to the stationarity

equations for the fields B and B†.

The D’s entering the above equations are:

D(ηη)(t,x; t′,x′) = 4 tr+ RN

{

−2 δt′,t+2 Ξ(x,x)(γ0 ⊗ 11)Ξ(x′,x′)(γ0 ⊗ 11)

+δt′,t+2 Ξ(x,x)(γ0 ⊗ 11)B
†
NRNBNΞ(x′,x′)(γ0 ⊗ 11)

+δt,t′+2 BNΞ(x,x)(γ0 ⊗ 11)RNΞ(x′, x′)(γ0 ⊗ 11)B
†
N

+δtt′ [BNΞ(x,x)(γ0 ⊗ 11)RNBNΞ(x′,x′)(γ0 ⊗ 11)

+ Ξ(x,x)(γ0 ⊗ 11)B
†
NRNΞ(x′,x′)(γ0 ⊗ 11)B

†
N ]

}

(D.11)
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D
(ϕ∗ϕ)
KK ′ (t,x; t′,x′) = tr+

[

δtt′ R ΦxK

(

1 − B
†
RB

)

Φ†
x′K ′

− δt′,t+2 RN ΦxK

(

1 − B
†
RNB

)

Φ†
x′K ′

]

(D.12)

D(ηϕ)(t,x; t′,K) = 2 tr+ RN

{

−δt′,t+2 Ξ(x,x)(γ0 ⊗ 11)Φ†
xK

+δtt′ BNΦ†
xKRNBNΞ(x,x)(γ0 ⊗ 11)

+ δt′,t+2 BNΦ†
xKΞ(x,x)(γ0 ⊗ 11)B

†
N

}

(D.13)

D(ηϕ∗)(t,x; t′,K) = 2 tr+ RN

{

−δt,t′+2 ΦxKΞ(x,x)(γ0 ⊗ 11)

+δtt′ ΦxKB
†
NRNΞ(x,x)(γ0 ⊗ 11)B

†
N

+ δt,t′+2 ΦxKB
†
NRNBNΞ(x,x)(γ0 ⊗ 11)

}

. (D.14)

D.2 Evaluation of the traces

We need to make explicit the meaning of the indices K’s : K = (n, γ), so that

ϕK −→ ϕnγ . (D.15)

and therefore
D

(ϕ∗ϕ)
KK ′ −→ D

(ϕ∗ϕ)
nγ,n′γ′

D
(ηϕ)
K −→ D

(ηϕ)
nγ

D
(ηϕ∗)
K −→ D

(ηϕ∗)
nγ .

(D.16)

Now we can readily compute the traces entering equations (D.11)–(D.14). In order to

present the results, it is convenient to introduce additional definitions.

On the solution of the gap equation, the matrices R and RN can be written as

R =
A + 1

2A + 1
(D.17)

RN =
A

2A + 1
(D.18)

where

A =

√
1 + H2 − H

2H
. (D.19)

Obviously, R + RN = I. Notice that the following relations are verified:

A2 = (4H)−2 − A , (D.20)

(1 + A)2 = (4H)−2 + 1 + A . (D.21)

We also introduce the following notation:

Θ = RN (I + A) , (D.22)

S
(s)
i = Θ (T

(s)
i − 1) , s = +,− , (D.23)
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and

tγ = tr′− [ (γ0 ⊗ 11) Γγ ] , (D.24)

tγis = tr′− [ (γiγ0 ⊗ 11)P
(−s)
i Γγ ] , (D.25)

tγis,js′ = tr′− [ (γj ⊗ 11)P
(−s′)
j (γ0γi ⊗ 11)P

(−s)
i Γγ ] (D.26)

where tr′− is the trace on the Dirac-taste space. Introducing the Fourier transforms

η(t,x) =

∫

dω

2π

∫

d3p

(2π)3
eiωt eip·x η(ω,p) , (D.27)

ϕnγ(t,x) =

∫

dω

2π

∫

d3p

(2π)3

∫

d3q

(2π)3
eiωt eip·x eiq·n ϕqγ(ω,p) (D.28)

we get the following effective action:

Seff =

∫

dω

2π

∫

d3p

(2π)3
1

2
D(ηη)(ω,p) η(−ω,−p) η(ω,p)

+

∫

dω

2π

∫

d3p

(2π)3

∫

d3q

(2π)3
D

(ϕ∗ϕ)
q,γγ′ (ω,p)ϕ∗

qγ(ω,p)ϕqγ′ (ω,p)

+

∫

dω

2π

∫

d3p

(2π)3

∫

d3q

(2π)3
D

(ηϕ)
qγ (ω,p)ϕqγ(ω,p) η(−ω,−p)

+

∫

dω

2π

∫

d3p

(2π)3

∫

d3q

(2π)3
D

(ηϕ∗)
qγ (−ω,p)ϕ∗

qγ(ω,p) η(ω,p) , (D.29)

where

D(ηη)(ω,p) =
1

g2
+ 64

∫

d3q

(2π)3

{

− (2 − cos 2ω)RN (q)RN (p− q)

− 1

2

∑

i

[S
(+)
i (q)S

(−)
i (p− q) + S

(−)
i (q)S

(+)
i (p− q)]

+4σ2 Θ(q)Θ(p + q)

}

, (D.30)

D
(ϕ∗ϕ)
q,γγ′ (ω,p) = δγγ′

[

R (p) R (q) − ei2ω RN (p) RN (q)
]

, (D.31)

D
(ηϕ)
qγ (ω,p) = 2

{

tγ
[

4σ2 Θ (p) Θ (q) − ei2ω RN (p) RN (q)
]

−2σ
∑

i,s=±1

s tγis

[

Θ (q) S
(s)
i (p) + Θ (p) S

(−s)
i (q)

]

+
∑

i,j

∑

s,s′=±1

s s′ tγis,js′ S
(−s)
i (q) S

(s′)
j (p)







. (D.32)

D.3 Effective action for the η-field

The integrations over ϕqγ and ϕ∗
qγ give the following effective action for η:

Sη =

∫

dω

2π

∫

d3p

(2π)3
1

2
η(−ω,−p) η(ω,p)

[

D(ηη)(ω,p) + ∆(ηη)(ω,p)
]

, (D.33)
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where

∆(ηη)(ω,p) =

∫

d3q

(2π)3
D

(ηϕ) ∗
qγ (−ω,p− q)D

(ηϕ)
qγ (ω,p − q)

R (q) R (p− q) − ei2ω RN (q) RN (p− q)
. (D.34)

The sum over γ appearing in the above equations can be performed using the following

identities
∑

γ

tγ ∗tγ = tr′− [ 11 ⊗ 11 ] = 8 , (D.35)

∑

γ

tγ ∗tγis = tr′−

[

(γi ⊗ 11)P
(s)
i

]

= 0 , (D.36)

∑

γ

tγ ∗tγis,js′ = tr′−

[

(γi ⊗ 11)P
(s)
i (γj ⊗ 11)P

(s′)
j

]

= 4 δij δs,−s′ , (D.37)

∑

γ

tγ ∗
is tγjs′ = tr′−

[

(γj ⊗ 11)P
(s′)
j (γi ⊗ 11)P

(−s)
i

]

= 4 δij δss′ (D.38)

∑

γ

tγ ∗
is tγjs′,ks′′ = tr′−

[

(γj ⊗ 11)P
(s′)
j (γk ⊗ 11)P

(s′′)
k (γi ⊗ 11)P

(−s)
i

]

= 0 , (D.39)

∑

γ

tγ ∗

i1s1,j1s′
1

tγ
i2s2,j2s′

2

=

= tr′−

[

(γi2 ⊗ 11)P
(s2)
i2

(γj2 ⊗ 11)P
(s′2)
j2

P
(s′1)
j1

(γj1 ⊗ 11)P
(s1)
i1

(γi1 ⊗ 11)
]

(D.40)

= 2
(

δi1j1δi2j2δs′
1
,−s1

δs′
2
,−s2

+ δi1i2δj1j2δs1s2
δs′

1
s′
2
− δi1j2δi2j1δs1s′

2
δs′

1
s2

)

.

which follow from the completeness relations satisfied by the matrices Γγ ’s which form a

basis in the relevant subspace of matrices acting on Dirac and taste indices.

With the above equalities it is easy to get the explicit form of ∆(ηη)(ω,p):

∆(ηη)(ω,p) = −64

∫

d3q

(2π)3
1

R (q) R (p− q) − ei2ω RN (q) RN (p− q)
(D.41)

×
{

[

4σ2 Θ (q) Θ (p− q) − ei2ωRN (q) RN (p− q)
]2

−
[

4σ2 Θ (q) Θ (p − q) − ei2ω RN (q) RN (p − q)
]

×
∑

i

[

S
(+)
i (q) S

(+)
i (p− q) + S

(−)
i (q) S

(−)
i (p− q)

]

+
∑

j

S
(+)
j (q) S

(−)
j (q)

∑

i

S
(+)
i (p− q) S

(−)
i (p− q)

+ 4σ2
∑

i

∣

∣

∣
Θ (p− q) S

(+)
i (q) + Θ (q) S

(−)
i (p − q)

∣

∣

∣

2
}
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Now we know D(ηη)(ω,p) and ∆(ηη)(ω,p) in terms of integrals of known functions of

momenta and σ.

D.4 Low energy expansion

Let us consider the expansion of D(ηη)(ω,p) and ∆(ηη)(ω,p) in powers of ω and p up to

second order:

D(ηη)(ω,p) + ∆(ηη)(ω,p) ' Zω(σ2)ω2 + Zp(σ
2)p2 + W (σ2)σ2 . (D.42)

The gap equation implies that the above expression at ω = 0 and p = 0 vanishes close to

the critical point, that is as σ → 0. It is straightforward to get the term at ω = p = 0

W (σ2)σ2 = 16

∫

d3q

(2π)3
1 + 2E2

q
(

E2
q + E4

q

)3/2
σ2 (D.43)

that is

W (σ2) ' 8

π2

∫ 1

0

dq

Eq
' − 4

π2
ln σ2 . (D.44)

At ω = 0, by keeping the most singular contribution when σ → 0, we get the contribution

proportional to p2

Zp(σ
2) ' 2

π2

∫ 1

0

dq

Eq
' − 1

π2
ln σ2 . (D.45)

Similarly, expanding in ω ,at p = 0, since the linear term is not diverging, the dominant

contribution is proportional to ω2 and

Zω(σ2) ' 2

π2

∫ 1

0

dq

Eq
' − 1

π2
ln σ2 . (D.46)
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